nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 06, v.29 39-45
基于视距概率模型的6G室内无线通信系统性能分析
基金项目(Foundation): 国家重点研发计划项目(2021YFB2900300); 国家自然科学基金项目(61960206006、62271147); 中央高校基本科研业务费(2242022K60006、2242023K5003); 江苏省重点研发计划项目(BE2022067、BE2022067-1); 江苏省双创博士项目(JSSCBS20210082); 欧盟H2020 RISE TESTBED2项目(872172); 东南大学启动研究基金项目(RF1028623029)
邮箱(Email):
DOI: 10.12142/ZTETJ.202306007
摘要:

工业物联网、大型商超、体育场馆等室内通信场景的重要性在6G无线通信系统中日益显著。研究室内视距(LoS)信号概率模型有利于提升室内通信系统性能分析准确性。针对室内环境,考虑家具、设备等室内阻挡物的任意位置以及任意高度,构建了视距信号概率模型。该模型可以准确刻画不同阻挡物场景下的视距概率。基于视距信号概率模型,推导了信噪比分布,并研究了室内覆盖性能和能量效率。相关研究成果有助于指导室内无线通信系统部署,降低成本。

Abstract:

The importance of indoor communication scenarios, such as industrial Internet of things, superstores, and stadiums, is becoming increasingly significant in the sixth generation(6G) wireless communication systems. The investigation into indoor line-of-sight(LoS) signal probability is conducive to improving the accuracy of indoor communication performance analysis. In this paper, a LoS probability model is constructed for indoor environments, considering any position and any height of blockages. This model can accurately characterize the LoS probability in different scenarios. Based on the model, this paper derives the signal-to-noise ratio(SNR) distribution and investigates the coverage performance and energy efficiency. The research results are instrumental in instructing the deployment of indoor wireless systems and reducing costs.

参考文献

[1]中国联通.中国联通5G数字化室分技术白皮书[R]. 2019

[2] ITU. Framework and overall objectives of the future development of IMT for2030 and beyond:ITU-R 1-8[S]. 2023

[3] WANG C X, YOU X H, GAO X Q, et al. On the road to 6G:visions,requirements, key technologies, and testbeds[J]. IEEE communications surveys&tutorials, 2023, 25(2):905-974. DOI:10.1109/COMST.2023.3249835

[4] YOU X H, WANG C X, HUANG J, et al. Towards 6G wireless communication networks:vision, enabling technologies, and new paradigm shifts[J]. Science China information sciences, 2021, 64(1):110301. DOI:10.1007/s11432-020-2955-6

[5] YIN L, HAAS H. Coverage analysis of multiuser visible light communication networks[J]. IEEE transactions on wireless communications, 2018, 17(3):1630-1643. DOI:10.1109/TWC.2017.2782694

[6] ABOAGYE S, IBRAHIM A, NGATCHED T M N, et al. Design of energy efficient hybrid VLC/RF/PLC communication system for indoor networks[J].IEEE wireless communications letters, 2020, 9(2):143-147. DOI:10.1109/LWC.2019.2946144

[7] LOU Z Y, BELMEKKI B E Y, ALOUINI M S. Coverage analysis of hybrid RF/THz networks with best relay selection[J]. IEEE communications letters,2023, 27(6):1634-1638. DOI:10.1109/LCOMM.2023.3267900

[8] 3GPP. Study on channel model for frequencies from 0.5 to 100 GHz:3GPP TR 38.901[S]. 2018

[9] WU Y Z, KOKKONIEMI J, HAN C, et al. Interference and coverage analysis for terahertz networks with indoor blockage effects and line-of-sight access point association[J]. IEEE transactions on wireless communications,2021, 20(3):1472-1486. DOI:10.1109/TWC.2020.3033825

[10] LI Z Y, HU H N, ZHANG J L, et al. Coverage analysis of multiple transmissive RIS-aided outdoor-to-indoor mmWave networks[J]. IEEE transactions on broadcasting, 2022, 68(4):935-942. DOI:10.1109/TBC.2022.3196169

[11] NEMATI M, MAHAM B, POKHREL S R, et al. Modeling RIS empowered outdoor-to-indoor communication in mmWave cellular networks[J]. IEEE transactions on communications, 2021, 69(11):7837-7850. DOI:10.1109/TCOMM.2021.3104878

[12] LI J, BAO X, ZHANG W C, et al. QoE probability coverage model of indoor visible light communication network[J]. IEEE access, 2020, 8:45390-45399. DOI:10.1109/ACCESS.2020.2977936

[13] YANG W F, ZHANG J L, GLAZUNOV A A, et al. Line-of-sight probability for channel modeling in 3-D indoor environments[J]. IEEE antennas and wireless propagation letters, 2020, 19(7):1182-1186. DOI:10.1109/LAWP.2020.2994392

[14] ZHENG H, ZHANG J L, LI H, et al. Exact line-of-sight probability for channel modeling in typical indoor environments[J]. IEEE antennas and wireless propagation letters, 2018, 17(7):1359-1362. DOI:10.1109/LAWP.2018.2846748

[15] AL-HOURANI A, KANDEEPAN S, LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE wireless communications letters, 2014, 3(6):569-572. DOI:10.1109/LWC.2014.2342736

[16] YANG S J, ZHANG J L, ZHANG J. Energy efficiency optimization in millimeter-wave air-to-ground links under UAV wobbling[C]//Proceedings of 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications(PIMRC). IEEE, 2022:572-576. DOI:10.1109/PIMRC54779.2022.9977967

[17] ITU. Propagation data and prediction methods required for the design of terrestrial broadband radio access systems operating in a frequency range from 3 GHz to 60 GHz:P.1410-6[S]. 2023

[18] WANG C X, LV Z, GAO X Q, et al. Pervasive wireless channel modeling theory and applications to 6G GBSMs for all frequency bands and all scenarios[J]. IEEE transactions on vehicular technology, 2022, 71(9):9159-9173. DOI:10.1109/TVT.2022.3179695

[19] FU Y, WANG C X, MAO X C, et al. Spectrum-energy-economy efficiency analysis of B5G wireless communication systems with separated indoor/outdoor scenarios[J]. IEEE transactions on wireless communications,2023, early access. DOI:10.1109/TWC.2023.3273261

基本信息:

DOI:10.12142/ZTETJ.202306007

中图分类号:TN929.5

引用信息:

[1]毛曦晨,王承祥,杨松江等.基于视距概率模型的6G室内无线通信系统性能分析[J].中兴通讯技术,2023,29(06):39-45.DOI:10.12142/ZTETJ.202306007.

基金信息:

国家重点研发计划项目(2021YFB2900300); 国家自然科学基金项目(61960206006、62271147); 中央高校基本科研业务费(2242022K60006、2242023K5003); 江苏省重点研发计划项目(BE2022067、BE2022067-1); 江苏省双创博士项目(JSSCBS20210082); 欧盟H2020 RISE TESTBED2项目(872172); 东南大学启动研究基金项目(RF1028623029)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文